- n∑k=122k+1ln(n+1)<ln(n+1)<n∑k=11√k2+k
- n∑k=11√2k(2k+1)>ln2n+12n+1
- n∑k=11k>ln(n+1)+12nn+1
- n∑k=122k−1−ln(2n−1)≤2
- n∑k=1lnk2k2<(n−1)(2n+1)2(n+1) , n≥2
- n∑k=2lnk−1k+1>2−n−n2√2n(n+1)
- n∏k=2lnkk+1<1n
- (1+1n−1)n>(1+1n)n+1 , n≥2
- nt+1t+1<n∑k=1kt<(n+1)t+1t+1 ,t>0
热爱数学的小伙伴
因为爱所以在
文章评论